The Isomorphism Problem for Universal Enveloping Algebras of Lie Algebras
نویسندگان
چکیده
Let L be a Lie algebra with universal enveloping algebra U(L). We prove that if H is another Lie algebra with the property that U(L) ∼= U(H) then certain invariants of L are inherited by H. For example, we prove that if L is nilpotent then H is nilpotent with the same class as L. We also prove that if L is nilpotent of class at most two then L is isomorphic to H.
منابع مشابه
Ideals in Non-associative Universal Enveloping Algebras of Lie Triple Systems
The notion of a non-associative universal enveloping algebra for a Lie triple system arises when Lie triple systems are considered as Bol algebras (more generally, Sabinin algebras). In this paper a new construction for these universal enveloping algebras is given, and their properties are studied. It is shown that universal enveloping algebras of Lie triple systems have surprisingly few ideals...
متن کاملSolvable Lie algebras with $N(R_n,m,r)$ nilradical
In this paper, we classify the indecomposable non-nilpotent solvable Lie algebras with $N(R_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $N(R_n,m,r)$.We also prove that these solvable Lie algebras are complete and unique, up to isomorphism.
متن کاملN ov 2 00 5 GROUPS AND LIE ALGEBRAS CORRESPONDING TO THE YANG - BAXTER EQUATIONS
For a positive integer n we introduce quadratic Lie algebras trn qtr n and discrete groups Trn, QTr n naturally associated with the classical and quantum Yang-Baxter equation, respectively. We prove that the universal enveloping algebras of the Lie algebras trn, qtr n are Koszul, and compute their Hilbert series. We also compute the cohomology rings of these Lie algebras (which by Koszulity are...
متن کاملTHE POSITIVE PART OF THE QUANTIZED UNIVERSAL ENVELOPING ALGEBRA OF TYPE AnAS A BRAIDED QUANTUM GROUP
The aim of this paper is to explain the bialgebra structure of the positive part of the quantized universal enveloping algebra (Drinfeld-Jimbo quantum group) of type Anusing the Lie algebra theory concepts. Recently has been introduced a generalization of Lie algebras, the basic T -Lie algebras [1]. Using the T -Lie algebra concept some new (we think) quantum groups of type Ancan be constructed...
متن کاملCrossed products of restricted enveloping algebras
Let K be a eld of characteristic p > 0, let L be a restricted Lie algebra and let R be an associative K-algebra. It is shown that the various constructions in the literature of crossed product of R with u(L) are equivalent. We calculate explicit formulae relating the parameters involved and obtain a formula which hints at a noncommutative version of the Bell polynomials. Crossed products of gro...
متن کامل